

Technical Overview

- Methodology
- 802.11b
- Migration
- How can you benefit from 802.11b
- Wireless Architectures
- Centralized Administrative Management

Methodology

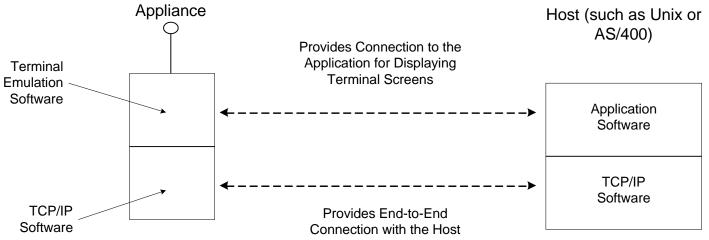
- Feasibility Study
- WBS (Work Breakdown Structure)
 - Requirements Phase
 - JAD (Joint Application Development)
 - Design Phase
 - Porting existing applications
 - Application Decomposition
 - Design Patterns
 - UML
 - Development Phase
 - Operational Support Preparation Phase
 - Installation and Testing Phase

802.11b (also known as WiFi)

- Benefits of 802.11b specification
 - IEEE standard for direct sequence modulation for data rates up to 11Mbps in the 2.4GHz frequency range band
 - Appliance interoperability
 - Fast product development
 - Stable future migration
 - Price reductions
- Gotchas
 - Some vendors use proprietary extensions
 - Attenuation and EM (electromagnetic) interference
 - Roaming isn't inherent in the 802.11b specification
 - 802.11a IEEE standard for OFDM (Orthogonal Frequency-Division Multiplexing) operating in the 5GHz frequency range band up to 54 Mbps, may be coming into market shortly

How will you Benefit from 802.11b

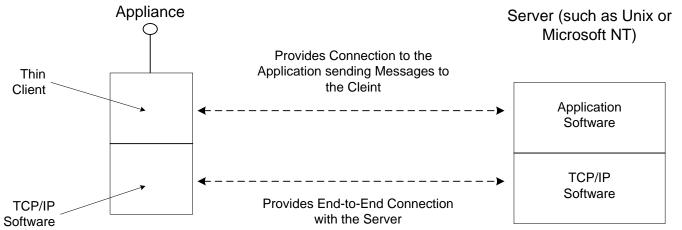
- Efficiency
 - Higher bandwidth
- Stability
 - Single specification
- Scalability
 - Cost is low
- Extensibility
 - Future application development
- Management
 - MAC (Media access control)
 - MIB (Management Information Base)



Wireless Architectures

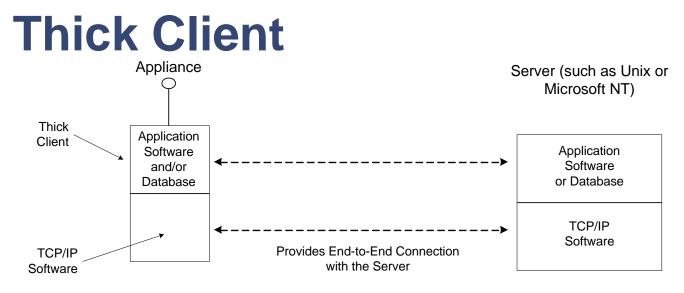
- Terminal Emulation
- Thin Client
- Thick Client (also known as Casually Connected)
- Direct Database Connectivity
- Intranet-Based Connectivity
- Middleware

Terminal Emulation



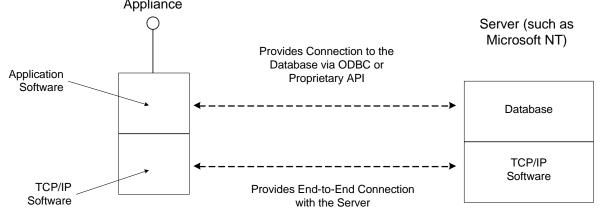
Pros

- Very little if any programming needed to interface with existing host-based applications
- Central application software control
- Low cost
- Cons
 - Limited availability of terminal-emulation software for DOS-based applications
 - Inflexible programming environment
 - Limited support for migration to client/server systems
 - Difficult in supporting the appliances
 - Significant effect on wireless networks

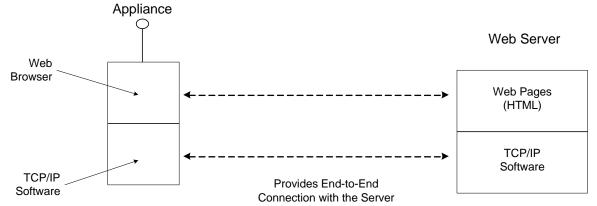

Thin Client

Pros

- Distributed application software control
- Changes can be made to the code base on the host without being concerned about the clients
- Ideal for devices with low resources
- Conserves on battery power
- Cons
 - Must have a host to support the application
 - All code resides on server
 - Device has limited functionality
 - Transaction must be done real-time



- Pros
 - Store-and-Forward messaging
 - Processing is done locally on device
 - Fairly robust applications can be developed
 - Out of radio range no problem
- Cons
 - Must have adequate resources on the device
 - Data synchronization issues
 - Takes up battery power
 - Must use distributed application software control

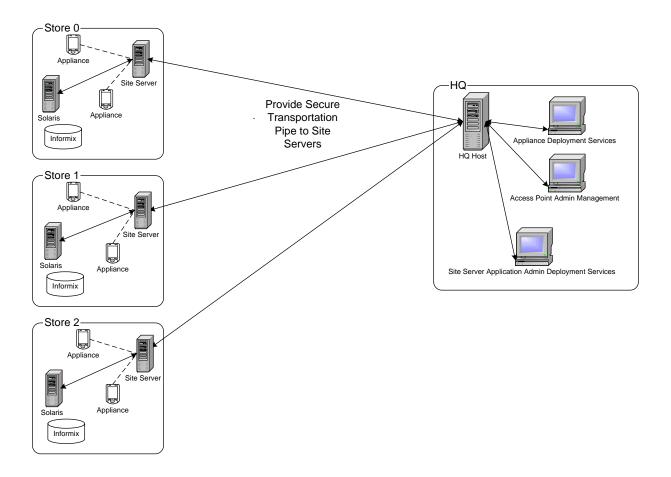

Direct Database Connectivity

- Pros
 - Flexible programming environment
 - Low cost
 - Good support for client/server systems
 - Distributed application software control
- Cons
 - Moderate amount of programming needed to interface new appliances with existing applications
 - Application size limited to the appliance memory
 - Wireless network impacts

Intranet-Based Connectivity

Pros

- Very little or no program needed to interface with existing hostbased applications
- Centralized application software control
- Low cost
- Strong support for client/server systems
- Cons
 - Potential effect on wireless network performance



Middleware Appliance Host (such as Unix or AS/400) Middleware Middleware Client Terminal Software Application Middleware Emulation or Server Software or Direct Software Database Database Connectivity Wireless TCP/IP TCP/IP Transport Software Software Wireless Software Transport Software **Provide Connection** Between the Appliance and Middleware over the Wireless Network Pros • **Optimization techniques** • Intelligent restarts • Data bundling Embedded acknowledgements • • Store-and-Forward messaging Screen scraping and reshaping •

- Support for Mobile IP
- Operational Support Mechanisms
- Highly efficient operation over wireless networks
- Reduces programming on appliance or host/server
- Support for migration from terminal/host to client/server system
- Support for multiple vendor appliances
- Long-term cost savings
- Cons
 - Higher initial cost for implementations with smaller number of appliances

Centralized Management Architecture

Architectural Overview

- Administrative Management
 - Single Point Management and view of global infrastructure
 - Access Point Management
 - Roaming with the use of Mobile IP
 - Device Auto Discovery
 - Client Device Management
 - Auto configuration
 - Version Control
 - Always keep your devices up to date
 - Application Management
 - Persistence
 - Process Control
 - Know when an app is out of service
- Multiple Store Deployment
 - Replace old hardware with new hardware store by store or in chunks
 - Use old hardware to support existing store hardware or sell \$\$\$